请在线提交您的留言,我们将尽快联系您!
作者:网络
应急人员定位仍然是现今最复杂的定位应用。虽然没有可以实现预期目标的灵丹妙药式传感器,但必需有多个技术节点,每个节点都具有前沿性能。此外,它涉及大规模传感器融合和系统集成方法。
高性价比、高性能MEMS惯性传感器现可为潜在的解决方案提供种子。本文提出一个完整的传感器到云传感器融合系统设想,包括高度复杂的算法。 下面表1描述了主要方法和实现技术。
表1. 契合关键目标的完整系统方法
系统开发人员所面对的主要挑战可总结为以下三大类:程序、环境和传感器融合。在设计多传感器解决方案的过程中,对于急救任务的高度复杂性以及各种极端环境带来的挑战,必须要有全面的了解。
图1. 关键作业要求定义急救人员产品设计问题。
RF 传播路径。
传感器温度/冲击影响。
基础设施损坏/改变的可能性。
由于MEMS无需外部基础设施,并能在动态环境下提供精密检测,因此如果能在极端环境中工作以及如果与合适的次级传感器配合使用,它将在总体解决方案中发挥主要作用。
图2. 即使在极端运动动力学条件下,工业MEMS设备也能够降低噪声和稳定运行。
与消费类领域相比,工业和汽车领域需要在相对复杂和极端的环境中精确检测,供应商集成的架构特性专门针对会影响性能的因素,例如,离轴运动、震动和冲击事件,以及时间和温度引起的误差。虽然这些设计特性往往最容易通过更大的传感器或更昂贵的处理过程来适应,汽车业和越来越重要的工业市场的经济压力,迫使采用更关键的方法设计性能,并实现成本效益。
最终专门针对工业应用开发出具有高性价比的MEMS组件,如表3所示,对三个主要类别组件的传送距离相关误差百分比进行了对比。工业级MEMS可提供与高端军事设备一样优质的导航能力,同时与商品化消费MEMS组件有合理的价格差。
表3. MEMS导航性能级别与传送距离误差百分比
急救人员模型并非对于行人模型可能足够的传感器噪声简单精度分析,它还必须包括关键规格,例如线性g抑制和跨轴灵敏度。图4对工业和低端MEMS设备的三个重要RSS误差规格进行了比较。很容易看出,噪声并非不利因素,而很多低端设备未指定的线性g和跨轴性能却是主要的问题。
表4. 工业和低端MEMS的RSS误差比较,表明噪声不是性能影响因素
表6. ADIS16488A MEMS IMU;高性价比和成熟的高性能及可靠性
惯性MEMS性能的进步和持续验证的质量与耐用性,现正与集成方面的重大进步相结合。最后一个障碍特别具有挑战性,因为如果不精心管理,传感器尺寸与性能和耐用性成反比。具有高度战略性、协调性和挑战性的一系列工艺进步必须通过测试和合并来满足该应用所需的性能密度水平,如图3所示。
在具体的急救人员追踪案例中,任务被划分为以下几个阶段,以便更好地评估传感器处理要求:抵达现场、部署、进入建筑内部并援—— 表7.设想消防车配备了高端GPS/INS系统,能够确定到达现场车辆的位置,作为已知的参考点。从这一点直到消防员进入建筑前,存在不确定和随机运动序列,其精确位置和映射系统依赖于实施的超宽频范围,才能精确锁定消防员位置和方向。进入建筑结构后,惯性传感器成为主要追踪传感器,目标是提供几米的定位精度。
如果需要,可将系统设计为完全依靠惯性传感器,但也可以利用其他可用和可靠的随机发射信号,例如UWB范围信号、磁力计校正和气压测量。如前所述,实施的算法不仅追踪位置,还可生成搜索模式的实时路径图。如果消防员下落或遇险,最初路径生成的地图就是也通过惯性检测引导的救援消防员的增补传感器输入。
表7. 急救任务不同阶段的传感器要求
深入了解传感器组件,以及其在压力下的漂移特性/局限性。
全面了解人体运动模型。
详细的应用级别见解和操作模式定义。
图6. PLM系统是基于高性能传感器、互补传感器滤波和处理以及云数据库和分析的完整传感器融合解决方案。输出精确位置和搜索路径图。
后续工作重点是集成最新一代传感器优势,并适应急救作业方案的新观念。最终集成将包括优化尺寸和本体位置,以及更完整的所需通信链路和最终系统资质实施方案。
免责声明 | 部分素材源自亚德诺半导体,转载仅作为行业分享交流,不代表本司观点,版权归原作者所有。如涉侵权,请联系我们处理。另外,如若转载本文,请标明出处。
如果您对这篇文章感兴趣,请立即联系我们
请在线提交您的留言,我们将尽快联系您!